Rabu, 25 Maret 2015

Neuron-specific enolase and S100B protein levels in recreational scuba divers with neurological decompression sickness.

Neuron-specific enolase and S100B protein levels in recreational scuba divers with neurological decompression sickness.



Neuron-specific enolase (NSE) and S100B protein are brain-origin proteins commonly described to assess the presence and severity of neurological injury. To date, there are limited data examining the influence of scuba diving on these biomarkers, particularly when symptoms of decompression sickness (DCS) occur. The purpose of this controlled study was to determine whether these serum neurochemical markers could be used as 1) indicators of neurological DCS and 2) predictors of incomplete recovery.


Fifty-nine divers with neurological DCS and 37 asymptomatic divers admitted for inadequate decompression, serving as controls, were consecutively enrolled between 2010 and 2012. Blood samples were collected at initial presentation up to 6 hours after dive completion (controls) or onset of symptoms (DCS divers). Biomarkers were quantified in nonhaemolysed samples only. Clinical outcome was assessed at 6 months post-injury.


The two groups did not differ regarding the variables examined, except for the total dive time which was slightly shorter in the control group. NSE, but not S100B protein, was higher in the DCS group than in controls (P < 0.0001). An NSE level > 15.9 µg L⁻¹ determined by ROC analysis predicted DCS development with a specificity of 100% (95% confidence interval (CI) 90 to 100) and a sensitivity of 24% (95% CI 14 to 36). There was a trend towards a higher likelihood of residual neurological deficits above this cut-off value (P = 0.08).


Early determination of NSE was found to be useful for the diagnosis of neurological DCS with a high specificity. However, its clinical applicability in decision making for determining treatment as well as its prognostic value remains to be established. Reliability of S100B protein was not demonstrated in the present study.

sumber:  2014 Mar;44(1):26-9.   tayang ulang oleh dr.Erick Supondha ( Hyperbaric &Diving Medicine Consultant) Jakarta Indonesia....dokter ahli hiperbarik dan kesehatan penyelaman....

Selasa, 24 Maret 2015

Hyperbaric oxygen treatment for air or gas embolism.

Hyperbaric oxygen treatment for air or gas embolism.


Gas can enter arteries (arterial gas embolism) due to alveolar-capillary disruption (caused by pulmonary overpressurization, e.g., breath-hold ascent by divers) or veins (venous gas embolism, VGE) as a result of tissue bubble formation due to decompression (diving, altitude exposure) or during certain surgical procedures where capillary hydrostatic pressure at the incision site is sub-atmospheric. Both AGE and VGE can be caused by iatrogenic gas injection. AGE usually produces strokelike manifestations, such as impaired consciousness, confusion, seizures and focal neurological deficits. Small amounts of VGE are often tolerated due to filtration by pulmonary capillaries. However, VGE can cause pulmonary edema, cardiac "vapor lock" and AGE due to transpulmonary passage or right-to-left shunt through a patent foramen ovale. Intravascular gas can cause arterial obstruction or endothelial damage and secondary vasospasm and capillary leak. Vascular gas is frequently not visible with radiographic imaging, which should not be used to exclude the diagnosis of AGE. Isolated VGE usually requires no treatment; AGE treatment is similar to decompression sickness (DCS), with first aid oxygen then hyperbaric oxygen. Although cerebral AGE (CAGE) often causes intracranial hypertension, animal studies have failed to demonstrate a benefit of induced hypocapnia. An evidence-based review of adjunctive therapies is presented.
[PubMed - indexed for MEDLINE]

sumber : http://www.ncbi.nlm.nih.gov/pubmed/24851554 

Tayang ulang oleh dr.erick supondha (hyperbaric and diving medicine consultant) dokter ahli hiperbarik dan kesehatan penyelaman , jakarta, indonesia, 021 99070050